Реферат: Швидкість різання при різних видах механічної обробки

Название: Швидкість різання при різних видах механічної обробки Раздел: Промышленность, производство |
||||||||||||||
Швидкість різання при різних видах механічної обробки 1. Загальні положення Швидкість різання – це один з основних факторів, які визначають продуктивність обробки. Із збільшенням швидкості різання росте продуктивність обробки, але швидше спрацьовується інструмент і ростуть зв’язані з цим затрати. Тому в кожному конкретному випадку треба вибирати допустиму швидкість різання, при якій забезпечується найвища продуктивність при найнижчій собівартості виробів. Швидкість різання обмежують властивості інструментального матеріалу. На швидкість різання, яку допускає інструмент, впливають матеріал різальної частини інструменту, вид обробки, оброблюваний матеріал, подача і глибина різання, геометричні параметри різальної частини інструменту, мастильно-охолоджуючі речовини. Швидкість різання визначається при поздовжньому точінні по залежності Чим більша глибина різання і подача тим менша швидкість різання, цей вплив залежить від показників степенів xv Вплив всіх інших факторів враховує коефіцієнт К Kmv Спрацювання інструменту залежить від твердості, міцності, стійкості проти спрацювання, теплостійкості і опірної адгезії його різальної частини. Чим вищі ці параметри, тим більшу швидкість різання допускає інструмент при тому ж періоді стійкості. Це враховує коефіцієнт Kiv Значний вплив на швидкість різання мають геометричні параметри різальної частини інструменту. Із збільшенням переднього кута γ зменшуються деформації оброблюваного матеріалу, сили різання і, відповідно, зменшується спрацювання різця. Все це так до деякого оптимального значення γ, яке відповідає певним оброблюваним і інструментальним матеріалам. Якщо дальше збільшувати передній кут, то погіршується тепловідведення внаслідок зменшення площі поперечного перетину різальної частини інструменту, тому треба зменшити швидкість різання. Вплив переднього кута на швидкість різання враховує поправочний коефіцієнт Кγ Задній кут α впливає на швидкість різання аналогічно, як і γ. Із збільшенням На швидкість різання значно впливає головний кут в плані φ. З зменшенням кута φ Додатне значення кута нахилу головної різальної кромки λ Ззбільшення радіуса заокруглення при вершині (плані) r Мастильно-охолоджуючі рідини знижують температуру в зоні різання, змащують поверхні тертя різального інструменту і заготовки, зменшують можливість прилипання стружки до інструменту. В результаті збільшується допустима швидкість різання і покращується якість обробленої поверхні. Вплив МОР враховує коефіцієнт К Крім перерахованих факторів на швидкість різання впливають форма поперечного перетину різця, допустима величина спрацювання, що також враховується відповідними коефіцієнтами. Різання матеріалів, як технологічний спосіб обробки заготовок деталей машин, повинен забезпечити високу точність і якість оброблених поверхонь, високу продуктивність і високу економічність. Виконання цих вимог залежить від комплексу одночасно діючих факторів, які можна умовно розділити на три групи: 1-фактори,які пов’язані з фізичною природою і структурним станом матеріалу оброблюваної заготовки (оброблюваністю); 2- фактори, що визначаються властивостями матеріалу різальної частини інструменту, його конструкцією і якістю виконання; 3-факторами, які відображають експлуатаційні умови проведення процесу різання. Оброблюваність матеріалів характеризується цілим рядом факторів, які відображають фізичні явища, що відбуваються в процесі різання (сили різання, потужність, якість поверхні…). У більшості випадків за критерій оброблюваності приймають швидкість різання, яка забезпечує деяку, найдоцільнішу в даних умовах, стійкість інструмента. Оброблюваність матеріалів багато в чому залежить від їх властивостей, а саме: 1. Здатності зміцнюватися під дією різального інструменту. В результаті зміцнення ростуть сили різання і тепловиділення, а це потребує більш теплостійкого і міцнішого інструменту. 2.Стираючої (абразивної) здатності деформованого матеріалу, яка безпосередньо діє на різальну частину інструменту. Чим вона вища, тим більша стираюча здатність, тим інструмент повинен бути стійкішим проти спрацювання, а допустима швидкість різання повинна бути меншою. 3.Теплопровідності деформованих шарів матеріалу, чим вона вища, тим менше спрацьовується інструмент і тим більшу швидкість різання можна забезпечити. 4. Рівномірності розподілу структурних складових у сталі, відсутності твердої кірки, твердих включень… Оброблюваність сталі залежить, в основному, від її структури, вмісту в ній легуючих елементів. Чим більше в сталі мартенситу і троститу (НВ=400-500кГ/мм2 Із збільшенням кількості вуглецю в сталі оброблюваність її погіршується, а якість поверхні покращується, знижується теплопровідність, що збільшує температуру різання, зростає її міцність і твердість. Все це веде до зниження швидкості різання. Легуючі елементи (Cr, Mg ,Si, W, Mo) також погіршують оброблюваність сталі, так як із збільшенням їх кількості зростають твердість і міцність, знижується теплопровідність. Наявність карбідів інтенсифікує спрацювання інструментів. З легованих сталей найгірша оброблюваність у аустенітних (нержавіючих і жароміцних). Це пояснюється їх високою адгезійною здатністю, великим тепловиділенням внаслідок значних сил різання і низької теплопровідності аустеніту, зміцненням зрізуваного шару через наклеп, підвищеною стираючою здатністю через наявність в структурі карбідів. Чавун обробляти важче ніж сталь. Це пояснюється низькою його теплопровідністю і наявністю включень цементиту і карбідів марганцю, які мають сильну стираючу здатність. Графіт покращує оброблюваність чавуну (сприяє підвищенню швидкості різання), але погіршує якість обробленої поверхні. Оброблюваність чавуну покращується при знижені в ньому вмісту кремнію, оскільки кремній сприяє зміцненню фериту. Оброблюваність відбіленого чавуну, який містить велику кількість цементиту, різко погіршується, його майже неможливо обробляти інструментом з швидкорізальної сталі. Високоміцний чавун з кулеподібним графітом допускає вищу швидкість різання ніж сірий чавун з пластинчастим графітом при однаковій твердості. При цьому, на відміну від сірого чавуну, оброблюваність високоміцного чавуну можна покращити термообробкою (відпалюванням, або високотемпературним відпуском). Мідні сплави краще піддаються термообробці, ніж сталь, так як вони мають меншу границю міцності і кращу теплопровідність. Оброблюваність сплавів міді покращується із збільшенням вмісту свинцю і погіршується з збільшенням нікелю і марганцю. Мідні сплави можуть різко відрізнятись своїми властивостями. Так швидкість різання бронзи, яка містить кремній і має стираючу здатність, зменшується в 3 рази. Оброблюваність алюмінієвих сплавів значно краща ніж сталі і швидкість різання може бути в 6-8 більшою. Оброблюваність покращується, якщо додати Cu, Pb, Sn, Mg, Bi, Zn і погіршується домішками кремнію і марганцю. Оброблюваність титанових сплавів гірша ніж конструкційної і вуглецевої сталі. Це пояснюється тим, що вони мають більшу твердість і невисоку пластичність. Поздовжня усадка стружки близька до 1, питомий тиск на передню поверхню високий Оброблюваність пластмас коливається в широких межах залежно від їх властивостей. Допустима швидкість різання при обробці цих матеріалів може бути вищою (текстоліт) і нижчою (фенопласт), ніж при обробці звичаної конструктивної сталі. Теплопровідність пластмас значно менша, ніж у металів, тому в процесі різання більше теплоти іде на нагрівання стружки та інструменту. Температура, що виникає в зоні різання часто спричиняє розм’якшення, а іноді і деформацію деталі. Тому доводиться знижувати швидкість різання. В залежності від оброблюваності всі сплави на основі металів поділяються на 14 груп. До перших двох груп відносяться магнієві і алюмінієві сплави, які найлегше обробляются. Чавуни відносяться до четвертої групи, вуглецеві сталі – до пятої, а низько і середньо леговані до шостої групи, а до 14 групи відносяться високоміцні сталі, які найважче обробляються. В кожній групі найбільш характерна марка взята за еталон. Для п’ятої і шостої груп – це сталь45, для чавунів – чавун СЧ20. Коефіцієнт оброблюваності для еталонів рівний одиниці. Коефіцієнти для інших матеріалів приведені у довідниках. 2. Опір матеріалів різанню В процесі різання виникають пружні і пластичні деформації зруйнованого шару (стружки) і верхнього шару обробленої поверхні, а також сили тертя на контактних поверхнях різального інструменту. При вільному різанні, коли в роботі знаходиться одна різальна кромка, сили різання можна розглядати як плоску систему сил, що діють на контактних площадках інструменту і заготовки. Ця система включає 4 складові: Р Pz Визначення цих сил складне завдання, особливо при закритому різанні, коли одночасно працюють дві різальні кромки і має місце об’ємний напружений стан. 3. Сили різання при точінні Сили різання найбільш зручно розглядати на прикладі точіння, або стругання, оскільки вони найбільше вивчені. Основні закономірності цих процесів розповсюджуються на всі види обробки. Рівнодіюча всіх сил R На практиці розглядають складові цієї сили, які діють по трьох координатних осях x R= Тангенціальна складова Pz За силою Рх Сила Ру Потужність різання Np Потужність подачі Nn Потужність головного приводу верстата N Дослідами встановлено, що на сили різання при точінні впливають оброблюваний матеріал, глибина різання (товщина шару металу, що знімається за один прохід)t Кр 1.Глибина різання і подача. Чим більші t 2. Швидкість різання по різному впливає на сили. При v= 3. Оброблюваний матеріал. Фізико-механічні властивості оброблюваного матеріау і його стан багато в чому визначають процес стружкоутворення і супутні йому деформації, а отже і сили опору, які різець і верстат повинні подолати. Чим більні границя міцності σв Кмр 4. Передній кут γ. При збільшенні переднього кута і зменшенні кута різання (δ=90-γ) процес стружкоутворення супроводжується меншими деформаціями, тобто різцю легше врізатись в оброблювану заготовку, разом з тим зменшуються сили тертя по передній поверхні. Все це приводить до зменшення сил різання. Враховується вплив переднього кута коефіцієнтом Кγ 5.Головний кут в плані φ. При збільшенні головного кута в плані збільшується товщина зрізу а 6.Радіус заокруглення різця при вершині r 7. Кут нахилу головної різальної кромки λ практично мало впливає на Р 8. Мастильно-охолоджуючі речовини (МОР) впливають не тільки на зменшення температури в зоні різання, але і зменшують тертя, отже впливають на зменшення сил, що діють на інструмент, враховується цей вплив коефіцієнтом Кор 4. Сили різання і потужність при свердлінні Процес свердління складніший порівняно з точінням і відбувається у тяжчих для інструменту умовах: ускладнене відведення стружки і підведення МОР, в різних точках різальної кромки різні швидкості різання, а на осі ця швидкість рівна нулю. Проте на елементарній дільниці процеси відбуваються ті ж, що і про точінні. Свердло зазнає опору з боку оброблюваного матеріалу і силу R Рп Рис.1 Сили різання при свердлінні. Радіальні сили Ру Крутний момент який долає шпиндель свердлильного верстата, в основному (80-90%) створюється силою Pz Потужність різання N= 5. Сили різання при фрезеруванні Фрезерування – технологічна операція обробки плоских і фасонних поверхонь багатозубим різальним інструментом – фрезами. Головний рух – швидке обертання інструменту (фрези) навколо своєї осі, а рух подачі – повільне поступове переміщення заготовки, закріпленої на столі верстата. Режим фрезерування характеризується: 1) швидкістю різання v= Процес фрезерування в порівнянні з точінням має свої особливості: 1. В роботі одночасно бере участь декілька лез, тому фрезерування більш продуктивний спосіб обробки ніж точіння; 2. Леза фрези працюють з перервами, а корпус її часто має значну масу, що сприяє відведення тепла від лез; 3. Площа зрізу може коливатись в широких границях, тому сили різання мають змінне значення; 4. Наростоутворення тут проявляється в меншій мірі, ніж при роботі різцем, тому що зуб врізається в матеріал з ударами і є менше можливостей для міцного утримування наросту. В залежності від розміщення зубів на поверхні фрези розрізняють торцеве і циліндричне фрезерування. Всі інші види фрезерування – це комбінація цих двох основних видів. Фрезерування циліндричними фрезами може бути зустрічним і попутнім. В процесі різання на кожен зуб фрези діє сила опору матеріалу різанню. Фреза повинна подолати сумарні сили різання. При фрезеруванні прямозубою циліндричною фрезою рівнодіючу силу різання, прикладеною в деякій точці А (рис.19а), можна розкласти на колову силу Р Рис.2. Сили різання при фрезеруванні. Колова сила Р Сумарну силу R Колова сила Р У прямозубої фрези лезо входить в контакт з заготовкою одночасно всією активною довжиною, що викликає різкі коливання сил різання. Для забезпечення більш плавної роботи фрези її виготовляють з гвинтовим зубом (кут підйому ω). При певних умовах можна забезпечити повну плавність роботи фрези, коли фреза незалежно від кута повертання знімає стружку постійного поперечного перетину (рівномірне фрезерування).Умова рівномірного фрезерування C= Р Тут СР Крутний момент на шпинделі М 6. Сили різання при шліфуванні Процес шліфування має свої особливості, які впливають на величину сил: 1. Шліфування здійснюється при великих швидкостях різання (20-40 м/сек), а при швидкісному фрезеруванні 50-50 м/сек і знімаються стружки малих перетинів. 2. Шліфувальний круг є багатолезовим інструментом. Він складається з різних елементів – абразивних зерен, з’єднаних зв’язкою в одне ціле. В роботі одночасно бере участь велика кількість зерен. Зерна – багатогранник неправильної форми з заокругленими вершинами. Тому зерна працюють з великими кутами різання >900 3.У зв’язку з великою швидкістю різання і великими кутами різання процес шліфування супроводжується високими температурами (1000-1500 о 4. Абразивний інструмент немає суцільного леза. На твірній круга знаходиться ряд зерен на деякій віддалі одне від другого і кожне зерно знімає з поверхні свою стружку. Тому процес шліфування є по суті процес царапання. 5. В ході шліфування можна міняти тільки елементи режиму різання і неможливо поміняти геометрію інструменту (α,β,γ). Тому керувати процесом шліфування складніше. 6. Абразивний інструмент має здатність до певної міри в ході роботи самозаточуватись, яке проходить шляхом руйнування і викришування затуплених зерен, в результаті чого вступають в роботу нові гострі зерна. Сили різання при шліфуванні відносно невеликі, але потужність велика за рахунок великої швидкості. Схема роботи абразивного зерна показана на рис. 3 Рис. 3 Кут різання δ=130-140о В довідниках приведені дані для розрахунку потужності різання при круглому зовнішньому шліфуванні з поздовжньою подачею, що проводиться за формулою N= 7. Методи і прилади для вимірювання сил різання 1. Метод зрівноважування заключається в тому, що вимірювальну силу зрівноважують протилежно напрямленою силою. Схема такого вимірювання подана на рис.4.Тут 1-зрівноважувальний пристрій; 2-масштабний пристрій; 3-різець; 4-заготовка. Сила PZ
Рис. 4 2. Метод гальмування полягає у вимірюванні крутного моменту за допомогою гальмівних пристроїв. Вимірюють крутний момент у два заходи: З початку виконують різання, реєструючи при цьому, наприклад, за допомогою амперметра силу струму електродвигуна верстата. Потім на шпиндель верстата встановлюють гальмо з сило вимірювальним пристроєм. Не змінюючи швидкості обертання шпинделя, гальмо навантажують доти, доки амперметр не покаже таж значення струму, що при різанні. Перевага цього методу у відносні простоті, але він не забезпечує високої точності і дозволяє вимірювати тільки одну складову сили різання PZ 3. Визначення сили різання за потужністю приводу верстата, що витрачається в процесі різання. При цьому вимірюється ватметром потужність, яку розвиває електродвигун верстата при різанні, і на її основі визначають тангенціальну складову сили різання. Тут необхідно знати к.к.д. верстата на різних режимах роботи і можна визначити тільки силуPZ 4. Метод пластичної деформації зразка. Між передавальною системою динамометра, яка закінчується сталевою кулькою, і його опорною площиною встановлюють пластинку з відносно м’якого металу (цинк, свинець, мідь…). Під час різання кулька залишає відбиток на пластинці по розмірах якого визначають силу різання. Цей метод не враховує динаміки процесу різання. 5. Метод пружної деформації ґрунтується на вимірюванні пружної деформації робочого елемента динамометра під дією сили різання. Ця деформація передається перетворювачам (датчикам), в яких виникають різні механічні, гідравлічні, пневматичні, магнітні та електричні явища. Аналіз тих явищ дає точне уявлення про сили, що виникають в процесі різання. Такі динамометри з тензодатчиками мають високу чутливість, можуть міряти декілька складових, надійні і зручні в експлуатації. 8. Особливості процесу різання пластмасс Особливості процесу обробки пластмас різанням пов’язані з їх фізико-механічними властивостями, які залежать від виду зв’язуючих і наповнюючих матеріалів. Особливо силь впливає наповнювач, його вид, структура і орієнтація. Теплопровідність пластмас в 500-600 разів менша теплопровідності металів, що затрудняє їх обробку, хоч твердість пластмас не висока – 30-600Н/мм2 Процес утворення стружки залежить від властивостей пластмас і умов різання. При різанні термореактивних пластмас утворюється стружка надлому, наріст не утворюється Різання шаруватих пластмас може проводитись вздовж і поперек напов-нювача. В першому випадку утворюється стружка подібна до зливної, в іншому випадку – стружки надлому (дрібна).Із спрацюванням інструмента стружка стає дрібнішою і у зв’язку з підвищенням температури в зоні різання змінюється її забарвлення. Кварцові і склоподібні наповнювачі спричиняють інтенсивне зношування інструменту. Характерним при різанні пластмас є те, що смоли, що входять до їх складу, в процесі різання оплавляють і покривають поверхню різця внаслідок чого затрудняється відведення стружки і погіршується якість обробленої поверхні. Пластмаси обробляють на металорізальних та деревообробних і спеціальних верстатах. При цьому застосовуються інструменти виготовлені з надтвердих матеріалів, твердих сплавів, швидкорізальної та інструментальної сталі. Основні види обробки пластмас: 1. Розрізання. При товщині листа до 3 мм застосовують важільні, або шарнірні ножиці, більш товсті листи ріжуть на деревообробних верстатах. 2. Точіння всіх видів конструкційних пластмас проводять на універсальних металорізальних верстатах, При цьому використовують різці з твердих сплавів ВК2, ВК3М, ВК4 з заднім кутом 15о 3. Свердління ведеться спіральними свердлами з кутом при вершині 118о Поліхлорвініл свердлять інструментом з швидкорізальної сталі з такими геометричними параметрами: 2φ=90-110о Гетинакс свердлять стандартними свердлами з швидкорізальної сталі такими кутовими параметрами: 2φ=90о Для свердління листів з текстоліту перпендикулярно до шарів наповнювача використовують стандартні свердла з Р9 і Р6М5. Свердла діаметром 5-10мм заточують під кутами : 2φ=70о Склопластики найважче обробляються різанням, тому що тут використовують свердла з твердих сплавів. Можна використати і швидкорізальні свердла з подвійною заточкою 2φ=70о 4. Нарізування різі. Зовнішні і внутрішні різі на виробах з пластмас нарізають ручними інструментами і на металорізальних верстатах. Для внутрішніх різей використовують азотовані, або хромовані мітчики з переднім кутом γ=-5-10о На деталях з термопластичних мас нарізують різь різцями з швидкорізальної сталі з переднім кутом γ=5-0о 5. Фрезерування застосовують для обробки плоских і фасонних поверхонь, пазів, фасок…, яке виконують на швидкохідних вертикально і горизонтально-фрезерних верстатах, обладнаних спеціальними пристроями для відсмоктування пилу і стружки, а також мають спеціальні пристрої для закріплення заготовки. Для забезпечення плавного без ударного різання використовують фрези з великим кутом нахилу різальної кромки до осі (ω=20о Таблиця 1.
|