Курсовая работа: Проектирование и исследование механизма крышкоделательной машины

Название: Проектирование и исследование механизма крышкоделательной машины
Раздел: Промышленность, производство

Проектирование и исследование механизма крышкоделательной машины

Министерство образования Беларуси

Белорусский государственный технологический университет

кафедра теоретической механики

курсовой проект по теории механизмов и машин

тема: проектирование и исследование механизма крышкоделательной машины

выполнил студент

III курса 3 группы

факультета ИДиП

Дорошевич А. Н.

проверил доцент Бокун Г. С.

Минск 2004

1. Введение

Исследуемой мною в курсовом проекте крышкоделательная машина предназначена для изготовления книжных крышек.

Крышкоделательные машины широко используются в полиграфической промышленности. Изготовление книжных крышек – сложный технологический процесс, требующий высокоточного оборудования. К последним относится и исследуемый мною механизм.

Движение от электродвигателя передаётся кривошипу через планетарный редуктор и зубчатую передачу. Преобразование вращательного движения кривошипа в возвратно-поступательное движение поршня осуществляется шестизвенным кулисным механизмом, состоящим из кривошипа, кулисного камня, вращающейся кулисы, шатуна и ползуна.

Смазываются механизмы плунжерным масляным насосом кулачкового типа. Кулачок, закрепленный на одном валу с зубчатым колесом, приводит в движение толкатель. Для получения требуемой равномерности движения на кривошипном валу закреплён маховик.

Высокая точность исследуемой машины требует минимальных погрешностей при расчетах. С этой целью курсовая работа выполнена на листах формата А1 с применением в отдельных местах вычислительной мощи современных компьютеров и новейшего программного обеспечения.

II Динамический синтез рычажного механизма

2.1 Задачи и методы динамического синтеза и анализа машинного агрегата

Задачей динамического синтеза машинного агрегата является определение постоянной составляющей приведенного момента инерции маховика Iм
, при котором колебания угловой скорости звена приведения не превышает значений, обусловленных коэффициентом неравномерности движения δ.

Задачей динамического анализа машинного агрегата является определение закона движения звена приведения (ω1
, ε1
) при полученном значении Iм
. Методы расчета могут быть графические и аналитические.

2.2 Структурный анализ рычажного механизма

Степень подвижности рычажного механизма определяем по формуле:

W=3n–2p5
–p4
, где

n=5—число подвижных звеньев механизма;

p5
—число пар V класса;

p4
—число пар IV класса;

В данном механизме 7 пар пятого класса: A(0;1), B(1;2), C(2;3), D(3;0), E(3;4) — вращательные. B3
(2;3), Е0
(0;5) — поступательные. Пар четвертого класса нет. Тогда

W=3·5–2·7–0=1.

Следовательно, положение звеньев механизма определяется заданием одной обобщенной координаты звена 1(j1
).

Определим класса механизма. Для этого расчленим его на группы Ассура. Сначала отделяем группу Ассура II класса, образованную звеньями 4 и 5, затем отсоединяем группу Ассура II класса, образованную звеньями 2 и 3. остается ведущее звено и стойка 0, образующие механизм I класса.

Формула строения механизма I(0;1)®II(2;3)®II(4;5)

Класс присоединенных групп — второй, поэтому рассматриваемый механизм относится ко II классу.

2.3 Определение основных параметров и размеров рычажного механизма.

Угловая скорость звена 1:

Размеры механизма заданны в задании:

lAB
=0.22 м lCD
=0.19 м lDE
=0,86 м lEF
=0,8 м X=0.8 м

Y1
=0.3 м Y2
=0.5 м

2.4 Описание определения кинематических характеристик рычажного механизма

2.4.1 Построение планов положений

Для построения планов положений механизма выбираем масштабный коэффициент

Тогда чертежные отрезки, изображающие звенья и расстояния на чертеже равны:

AB=lAB
/mS
=0.22/0.005=44 мм

CD=lCD
/mS
=0.19/0.005=38 мм

DE=lDE
/mS
=0.86/0.005=172 мм

EF=lEF
/mS
=0.8/0.005=160 мм

X=X/mS
=0.8/0.005=160 мм

Y1
=Y1
/mS
=0.3/0.005=60 мм

Y2
=Y2
/mS
=0.5/0.005=100 мм

Делим траекторию движения точки B кривошипа на 12 равных частей и строим 12 положений механизма.. На всех звеньях показываем положения центров масс. Центры масс находятся посередине: AS1
=0 мм. Центр масс кулисы CB находится посередине максимальной длины звена, которую определим из построений.

2.4.2 Построение планов аналогов скоростей

Требуется построить 12 планов аналогов скоростей и определить длины отрезков, изображающих анализ скоростей на планах. Построение производим по группам Ассура в соответствии с формулой строения механизма I(0;1)®II(2;3)®II(4;5).

Поскольку между скоростями точек и аналогами скоростей существует пропорциональность, то для построения планов воспользуемся векторными уравнениями для построения планов скоростей.

Для построения планов аналогов скоростей механизма выбираем масштабный коэффициент ;

Переходим к построению плана аналога скоростей для группы Ассура (2;3’). Известна скорость точки B1
по величине и направлению. Скорость точки B3’
найдем, решив графически векторное уравнение:

;

Отрезок pb3
аналогичен скорости точки B3
. Для построения отрезка pс, изображающего аналог скорости точки С звена 3 воспользуемся теоремой подобия

;,

Направление

Скорости точек E и S3
найдём из соотношений

; ,

Переходим к построению плана аналогов скоростей для групп Ассура (4;5). Известна скорость точки E. Найдем скорость точки F, рассматривая ее движение по отношению к точке E. Запишем векторное уравнение:

Отрезок pe изображает аналог скорости точки Е.

Для построения отрезка pS4
воспользуемся теоремой подобия.

; .

2.4.3 Расчет приведенного момента инерции Iпр

Приведенный момент рассчитывается по формуле:

.

В нашем случае эта формула примет вид:

, где;;;;

.

Из условия задания определяем:

Массы звеньев:

Моменты инерции звеньев:

После подстановки значений рассчитанных величин получим следующую формулу:

2.4.4 Расчет приведенных моментов сил

На входное звено крышкоделательной машины при рабочем ходе действует сила полезного сопротивления P n.с.=500 H.

Величину приведенного момента сил сопротивления определяем по формуле:

Определим постоянные величины, входящие в эту формулу

Для рабочего хода:

Для холостого хода:

2.4.5 Определение работы сил сопротивления Ас

График Ас(j) построим методом численного интегрирования, применяя метод трапеций. Формула интегрирования имеет вид:

;

где — шаг интегрирования.

2.4.6 Построение диаграммы изменения кинетической энергии и диаграммы «энергия-масса»

График изменения кинетической энергии построим путем вычитания ординат графика Ас
(j) из соответствующих ординат графика Ад
(j). После этого построим диаграмму Виттенбауера (неполная диаграмма»энергия-масса») путем графического исключения параметра j из графиков изменения кинетической энергии механизма и приведенного момента инерции.

2.4.7 Определение момента инерции маховика

Для определения момента инерции маховика по заданному коэффициенту неравномерности движения следует провести касательные к графику «энергия-масса» под углами Ymax
и Ymin
к оси абсцисс (оси приведенного момента инерции).

Тангенсы этих углов определим по формулам:

, Ymax
=88.45°

, Ymin
=88.28°.

Диаметр маховика с тяжелым ободом: .

Для чугуна ;;, отсюда:

;

Mасса маховика: ;

Ширина обода: ;

Высота обода: .

2.4.8 Определение параметров маховика

Для построения графика w необходимо найти Iполн
и Т по формулам:

;.

;

;

Имеем . Определяем угловую скорость для всех положений механизма. По расчетным данным определяем среднюю угловую скорость:

2.4.9 Расчет истинной угловой скорости звена приведения

Все расчёты и графики выполнены с использованием математического пакета MathCAD Professional 2001 и приведены ниже

III Динамический анализ рычажного механизма

3.1 Определение линейных и угловых скоростей, ускорений точек и звеньев механизма

Для построения плана механизма в 9-ом положении примем масштабный коэффициент .

Для построения плана скоростей определим скорость точки В

Определим масштабный коэффициент

Построение плана ведется в соответствии с векторными уравнениями, рассмотренными в пункте II.

Переходим к построению плана ускорений. Так как кривошип вращается неравномерно, то ускорение точки В кривошипа равно:

, где

Выбрав масштабный коэффициент ,вычислим отрезки, изображающие aB1A
n
и aB1A
t

Из полюса p откладываем отрезок pn1
||АВ, направленной к центру вращения, отрезок n1
b^АВ откладываем в направлении e1
.

Ускорение точки В3
найдем, решив графически систему векторных уравнений.

;

Кариолисово ускорение определяем по формуле

На плане ускорений оно изображается отрезком

Вектор нормального ускорения равен:

На плане ускорений изображается отрезком

.

Ускорение точки С найдем по теореме подобия

Ускорение точек E и S3
найдем из соотношений

Для определения ускорения точки F составим два векторных уравнения.

В этих уравнениях aF0
=0 и =0, так как направляющая XX неподвижна.

Действительные ускорения точек и звеньев равны:

3.3 Расчет сил, действующих на звенья механизма

Определим силы тяжести звеньев, главные векторы и главные моменты сил инерции звеньев.

Звено 1:

Mu1
=(Is1
+Iм
) ×e1
=(1.836+12.143)×2.42=33.82919 H×м

Звено 2:

G2
=0;

Pu2
=0;

Mu2
=0.

Звено 3:

G3
=m3
g=;

Pu3
=m3
×aS3=1.26 H

Mu
=IS3
×e3
=0.56 H×м

Звено 4:

G4
=m4
g=84.366H;

Pu4
=m4
×aS4
=7.74 H

Mu4
=IS4
×e4
=0.23 H×м

Звено 5:

G5
=m5
g=78.48 H;

Pu5
=m5
×aЕ
=9.6 H

Mu5
=0.22

Звено 6:

G6
=6m5
g=470.088

Pu6
=m6
×a6
=101.28.5

К звену 6 приложена сила Pc
=500 Н.

3.4 Определение значений динамических реакций в кинематических парах групп Ассура

Отсоединяем группу Ассура (4,5). Прикладываем к ней силу сопротивления, силы тяжести, силы инерции и момент сил инерции. Действие отброшенных звеньев заменяем реакциями и . Реакцию представляем в виде:

а реакцию направим перпендикулярно направляющей ползуна 5.

Составляющую найдём из условия

Н.

Для определения реакций и запишем уравнение равновесия группы Ассура (4,5):

Принимаем масштаб плана сил

Строим план сил группы(4,5):

Отрезки ,изображающие силы на плане:

Из плана сил находим:

Реакцию во внутренней кинематической паре найдём, рассмотрев равновесие звена 4

Отсоединяем группу Ассура (2,3). Прикладываем реакцию , силы тяжести, силы инерции, моменты сил инерции. Действие отброшенных звеньев заменяем реакциями и .

Реакцию направляем перпендикулярно звену BC и найдём её из условия:

Уравнения равновесия группы (2,3)

Принимаем масштаб сил

Строим план сил группы(2,3):

Отрезки изображающие силы на плане:

Из плана сил находим:

Реакцию во внутренней кинематической паре

Уравнение равновесия звена 1

Принимаем масштаб сил

Отрезки изображающие силы на плане:

Из плана сил находим

;

Сравнение результатов

IV. Проектирование зубчатых механизмов.

4.1 Проектирование планетарного редуктора

Параметры редуктора:

Формула Виллиса

откуда

Полученное соотношение представим в виде

,

в результате чего числа будут пропорциональны соответственно числам a,b,c,d.

Чтобы обеспечить условие соосности

вводим дополнительный множитель следующим образом

откуда следует, что

где q-коэффициент пропорциональности.

Рассмотрим следующие варианты:

Принимаем для расчётов вариант 1.

Проверка z1
=50>17; z2
=60>17; z’2
=22≥20; z3
-z’2
=110>8.

Останавливаемся на этом варианте.

Условие соседства

Принимаем к = 3.

Проверяем передаточное отношение

Условие сборки

где D-наибольший общий делитель чисел z2
=60 и z’2
=22; D=2.

-любое целое число

Условие сборки выполняется.

Делительные начальные диаметры колёс редуктора:

d1
=m∙z1
=50∙2=100

d2
=m∙z2
=2∙60=120 мм;

d’2
=m∙z’2
=2∙22=44 мм;

d3
=m∙z3
=2∙132=264 мм;

На листе 3 в масштабе 1:2 вычерчиваем схему редуктора в двух проекциях.

4.2 Построение картины эвольвентного зацепления

Рассчитаем размеры зубчатых колёс с числами зубьев zI
=za
=13 и zII
=zb
=19 со свободным выбором межосевого расстояния, нарезаемых стандартной инструментальной рейкой модуля m=3 мм (α=20˚;h*
a
=1;c*
=0.25).

Минимальные коэффициенты смещения

Делительные диаметры

dI
=m∙zI
=3∙13=39 мм;

dII
=m∙zII
=3∙19=57 мм;

Делительное межосевое расстояние

a=0.5∙(dI
+dII
)=0.5∙(39+57)=48 мм.

Угол зацепления

По таблице инвалют находим угол

Межосевое расстояние

Диаметры основных окружностей

dbI
= dI
cosα=39∙0.9397=36.65 мм;

dbII
= dII
cosα=57∙0.9397=53.56 мм;

Диаметры начальных окружностей

Диаметры окружностей впадин

Высота зуба

Диаметры окружностей вершин

Окружной делительный шаг

P=π∙m=3.14∙3=9.424 мм;

Угловые шаги колёс

Окружные делительные толщины зубьев

Окружные толщины зубьев по вершинам

Коэффициент перекрытия

На листе 3 в масштабе 10:1 строим картину эвольвентного зубчатого зацепления.

Из построений находим коэффициент перекрытия:

V. Синтез кулачкового механизма

5.1 Задачи и методы синтеза кулачкового механизма

Задачами синтеза кулачкового механизма являются:

a) определение основных размеров кулачкового механизма, в нашем случае радиуса основной шайбы Ro и эксцентриситета;

b) построение профиля кулачка.

Задачи синтеза могут быть решены аналитическими или графическими методами.

5.2 Исходные данные

Исходные параметры механизма приведем в таблице:

5.3 Определение основных размеров кулачкового механизма

5.3.1.Построение кинематических диаграмм законов движения толкателя.

Рабочий угол кулачка:

90º+20+60º=170º;

Переведем его в радианы:

;

Фазовые углы в радианах равны:

;

;

Графики зависимости ускорения, скорости и перемещения толкателя от угла поворота построим аналитическим методом, используя формулы, описывающие закон движения Шуна.

График зависимости ускорения толкателя от угла поворота кулачка:

Расчёты выполним с помощью пакета MathCAD 2001 professional:

5.3.2 Определение минимального радиуса кулачка

Минимальные размеры кулачка определяются из условия, что угол давления в проектируемом механизме во всех положениях не превышает заданного максимально допустимого угла . Для этого строим совмещенную диаграмму , которая получается из диаграмм и путем графического исключения угла . К построенному графику проводим касательные под углом к оси . Точка пресечения этих касательных определяет положение оси вращения кулачка, имеющего наименьший радиус-вектор . Проведя прямую на расстоянии e от оси , найдем точку пересечения этой прямой с касательной. Принимаем эту точку за ось вращения кулачка. Наименьший радиус-вектор равен:

;

5.4 Построение профиля кулачка

Выбираем масштабный коэффициент .

Проводим две окружности радиусами и e, затем вертикальную линию, касательную к окружности радиуса e — линию движения толкателя. Радиус ролика выбирается наименьшим из двух условий:

;

где -наименьший радиус кривизны профиля кулачка.

Принимаем .

Выбираем на центровом профиле ряд точек, из которых проводим окружности радиусом . Огибающая этих окружностей есть действительный профиль кулачка.

5.5 Определение зависимости угла давления от угла поворота кулачка

Расчет производим по формуле:

Данные расчёта сводим в таблицу .

Таблица 4.2.

Ход толкателя H, м

Фазовые углы

υдоп.

Законы движения

φу.

φд.с.

φв.

При удалении

При возвращении

0.06

90

20

60

28

Закон Шуна

Закон Шуна

№ пол

0

1

2

3

4

5

6

7

8

0

11.25

22.5

33.75

45

56.25

67.5

78.75

90

0.6º

10º

17.6º

19.7º

28º

24.7º

22.8º

14º

2.86º

Список использованной литературы:

1. Г. Н. Девойно. Курсовое проектирование по теории механизмов и машин. Минск. Вышэйшая школа. 1986.

2. С. А. Попов, Г. А. Тимофеев. Курсовое проектирование по теории механизмов и машин. Высшая школа. Минск. 1998

3. И. И. Артоболевский. Теория механизмов и машин. Москва. Наука. 1988.

Поделиться:
Нет комментариев

Добавить комментарий

Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

№ пол

9

10

11

12

13

14

15

16

17

110

117.25

124.5

131.75

139

146.25

153.5

162.75

170

3.17º

14.5º

24.7º

28.4º

28.2

13.9

4.2º

1.3º

0.6º