Контрольная работа: Исследование частотных характеристик типовых динамических звеньев

Название: Исследование частотных характеристик

Министерство образования и науки Украины

Донбасская Государственная Машиностроительная Академия

Кафедра АПП

Лабораторная работа

по дисциплине

Теория автоматического управления

Тема

Исследование частотных характеристик типовых динамических звеньев

Краматорск

Задание

Таблица 1

1.
Исследование безынерционного звена

1.1 Исследование частотных характеристик безынерционного звена

Для исследования частотных характеристикбезынерционного звена в прикладном пакете Proteus\ISIS составляем структурную схему, представленную на рисунке 1 для трех значений K:

.

ЛАЧХ звеньев представлены на рисунке 2, графики переходной функции – на рисунке 3.

Рисунок 1
– Структурная схема для исследования безынерционного звена

Рисунок 2
– ЛАЧХ безынерционных звеньев

Рисунок 3
– Переходные функции безынерционных звеньев

1.2 Реализация безынерционного звена

Реализуем безынерционное звено с коэффициентом усиления на операционных усилителях (рисунки 4 и 7). ЛАЧХ и ЛФЧХ инвертирующего и неинвертирующего усилителей представлены на рисунках 5 и 8, переходные функции – на рисунках 6 и 9. Для сравнения частотных характеристик идеальных и реальных звеньев изобразим их ЛЧХ в совмещенных координатах (рисунок 10).

Рисунок 4
– Электрическая принципиальная схема инвертирующего усилителя с коэффициентом усиления

Рисунок 5
– ЛАЧХ и ЛФЧХ инвертирующего усилителя

а)

б)

Рисунок 6
– Переходные функции идеального безынерционного звена и инвертирующего усилителя

Рисунок 7
– Электрическая принципиальная схема неинвертирующего усилителя с коэффициентом усиления

Рисунок 8
– ЛАЧХ и ЛФЧХ неинвертирующего усилителя

а)

б)

Рисунок 9
– Переходные функции идеального безынерционного звена и неинвертирующего усилителя

Рисунок 10
– ЛАЧХ и ЛФЧХ идеального безынерционного звена, инвертирующего усилителя и неинвертирующего усилителя

При рассмотрении частотных и временных характеристик безынерционных звеньев можно сделать следующие выводы:

· при прохождении через безынерционный элемент амплитуда и фаза выходного сигнала не зависит от частоты входного сигнала

· при увеличении (уменьшении) коэффициента усиления ЛАЧХ увеличивается (уменьшается) во столько же раз, а ЛФЧХ не меняется.

2.
Исследование апериодического звена 1-го порядка

a.
Исследование частотных характеристик апериодического звена 1-го порядка

Для исследования частотных характеристикапериодического звена 1-го порядка в прикладном пакете Proteus\ISIS составляем структурную схему, представленную на рисунке 11, для трех значений :

.

Логарифмические частотные характеристики апериодических звеньев представлены на рисунке 12, графики переходной функции – на рисунке 13.

Рисунок 11
– Структурная схема для исследования апериодических звеньев 1-го порядка

Рисунок 12
– Логарифмические частотные характеристики апериодических звеньев 1-го порядка

Рисунок 13
– Переходные функции апериодических звеньев 1-го порядка

b.
Реализация апериодического звена 1-го порядка

Реализуем апериодическое звено 1-го порядка с постоянной времени на -цепочке и на -цепочке (рисунок 14). ЛАЧХ и ЛФЧХ -цепочки и на-цепочки представлены на рисунке 15, а и 15, б. Для сравнения частотных характеристик идеальных и реальных апериодических звеньев изобразим их ЛЧХ в совмещенных координатах (рисунок 15, в).

а)б)

а) -цепочка;

б) -цепочка

Рисунок 14
– Электрическая принципиальная схема апериодических звеньев 1-го порядка с постоянной времени

а) б)

в)

Рисунок 15
– ЛАЧХ и ЛФЧХ апериодических звеньев

а) -цепочка; б) -цепочка; в) совмещенные ЛЧХ идеального апериодического звена, -цепочка и -цепочка

При анализе частотных характеристик апериодических звеньев 1-го порядка можно сделать следующие выводы:

· увеличение (уменьшение) постоянной времени звена приводит к сдвигу ЛАЧХ и ЛФЧХ влево (вправо).

· чем меньше постоянная времени Т, тем шире полоса пропускания (т.к.~).

· при уменьшении постоянной времени уменьшается время переходного процесса и наоборот.

· чем меньше постоянная времени, тем меньше время переходного процесса и шире полоса пропускания, следовательно, чем меньше время переходного процесса, тем шире полоса пропускания.

· если на график ЛАЧХ заменить ломаной кривой и из точки »разлома» опустить прямую на ось , то это и будет сопрягающая частота. Постоянную времени можно определить, зная сопрягающую частоту : .

c.
Исследование частотных характеристик апериодического звена 2-го порядка

Для исследования частотных характеристикапериодического звена 2-го порядка в прикладном пакете Proteus\ISIS составляем структурную схему, представленную на рисунке 16, при неизменной первой постоянной времени и для трех значений :

.

Логарифмические частотные характеристики апериодических звеньев 2-го порядка представлены на рисунке 17, графики переходной функции – на рисунке 18.

Рисунок 16
– Структурная схема для исследования апериодических звеньев 2-го порядка

Рисунок 17
– Логарифмические частотные характеристики апериодических звеньев 2-го порядка

Рисунок 18
– Переходные функции апериодических звеньев 2-го порядка

d.
Реализация апериодического звена 2-го порядка

Попробуем реализовать апериодическое звено 2-го порядка с постоянными времени и на двух последовательно соединенных -цепочках, отдельно каждая из которых представляет собой апериодическое звено 1-го порядка (рисунок 19). ЛАЧХ и ЛФЧХ данного звена и необходимого апериодического звена 2-го порядка представлены на рисунке 20, а, а их переходные функции – на рисунке 20, б.

Рисунок 19
– Электрическая принципиальная схема двух последовательно соединенных апериодических звеньев 1-го порядка с постоянными времени и

а)б)

а) ЛАЧХ и ЛФЧХ; б) переходная функция

Рисунок 20
– Характеристики последовательно соединенных -цепочек

Реализуем апериодическое звено 2-го порядка с постоянными времени и на двух последовательно соединенных -цепочках, разделенных промежуточным (разделяющим, развязывающим) усилителем (повторителем) (рисунок 21). ЛАЧХ и ЛФЧХ данного звена и необходимого апериодического звена 2-го порядка представлены на рисунке 22, а, а их переходные функции – на рисунке 22, б.

Рисунок 21
– Электрическая принципиальная схема двух -цепочек с постоянными времени и , разделенных операционным усилителем

а) б)

а) ЛАЧХ и ЛФЧХ;

б) переходная функция

Рисунок 22
– Характеристики последовательно соединенных -цепочек с разделительным усилителем

При анализе частотных характеристик апериодических звеньев 2-го порядка можно сделать следующие выводы:

· увеличение (уменьшение) постоянной времени звена приводит к сдвигу ЛАЧХ и ЛФЧХ влево (вправо).

· увеличение (уменьшение) постоянной времени звена приводит к увеличению (уменьшению) времени переходного процесса.

· на полосу пропускания большее влияние оказывает большая постоянная времени

· при увеличении постоянной времени звена время переходного процесса увеличивается, а полоса пропускания уменьшается, следовательно, при увеличении времени переходного процесса полоса пропускания уменьшается и наоборот.

e.
Аппроксимация апериодического звена 2-го порядка звеном 1-го порядка

Ввиду того, что апериодическое звено 2-го порядка можно аппроксимировать звеном 1-го порядка, если одна постоянная времени намного превышает вторую ( в 10 раз), сравним характеристики звена с постоянными времени и со звеном 1-го порядка, изображенным на рисунке 23.

Аппроксимация апериодического звена 2-го порядка звеном 1-го порядка

а) б)

а) ЛАЧХ и ЛФЧХ;б) переходные функции

Рисунок 24
– Характеристики апериодического звена 2-го порядка и инерционного звена

При анализе характеристик апериодических звеньев (рисунок 24) можно сделать следующие выводы:

· апериодическое звено 2-го порядка можно аппроксимировать апериодическим звеном 1-го порядка, если первая постоянная времени намного меньше второй, т.к. в таком случае влияние первой экспоненты на форму выходного сигнала несущественно.

Исследование колебательного звена

При исследовании колебательного звена необходимо пронаблюдать за характером его частотных характеристикпри изменении постоянной времени и декремента затухания в пределах, указанных в индивидуальном задании. Т.е. необходимо исследовать частотные характеристики при постоянных времени и декременте затухания .

f.
Исследование частотных характеристик колебательного звена при изменении постоянной времени () и неизменном декременте затухания ()

Для исследования колебательного звена при изменении постоянной времени () и неизменном декременте затухания в прикладном пакете Proteus\ISIS составляем структурную схему, представленную на рисунке 25. Логарифмические частотные характеристики колебательного звена представлены на рисунке 26, графики переходной функции – на рисунке 27.

Рисунок 25
– Структурная схема для исследования колебательныхзвеньев при изменении постоянной времени () и неизменном декременте затухания ()

Рисунок 26
– Логарифмические частотные характеристики колебательных звеньев при изменении постоянной времени () и неизменном декременте затухания ()

Рисунок 27
– Переходные функции колебательныхзвеньев при изменении постоянной времени () и неизменном декременте затухания ()

g.
Исследование частотных характеристик колебательного звена при изменении постоянной времени () и неизменном коэффициенте демпфирования ()

Для исследования колебательного звена при изменении постоянной времени () и неизменном декременте затухания (
) в прикладном пакете Proteus\ISIS составляем структурную схему, представленную на рисунке 28. Логарифмические частотные характеристики колебательного звена представлены на рисунке 29, графики переходной функции – на рисунке 30.

Рисунок 28
– Структурная схема для исследования колебательныхзвеньев при изменении постоянной времени () и неизменном декременте затухания (
)

Рисунок 29
– Логарифмические частотные характеристики колебательных звеньев при изменении постоянной времени () и неизменном декременте затухания (
)

Рисунок 30
– Переходные функции колебательныхзвеньев при изменении постоянной времени () и неизменном декременте затухания (
)

h.
Исследование частотных характеристик колебательного звена при неизмененной постоянной времени () и изменении декремента затухания ().

Для исследования колебательного звена при неизмененной постоянной времени () и изменении коэффициента демпфирования (
) в прикладном пакете Proteus\ISIS составляем структурную схему, представленную на рисунке 31. Логарифмические частотные характеристики колебательного звена представлены на рисунке 32, графики переходной функции – на рисунке 33.

Рисунок 31
– Структурная схема для исследования колебательного звена при неизмененной постоянной времени () и изменении декремента затухания ()

Рисунок 32
– Логарифмические частотные характеристики колебательных звеньев при изменении постоянной времени () и неизменном декременте затухания ()

Рисунок 33
– Переходные функции колебательного звена при неизмененной постоянной времени () и изменении декремента затухания ()

i.
Реализация колебательного звена

Реализуем колебательное звено с постоянной времени и коэффициентом демпфирования на -контуре (рисунок 34). ЛАЧХ и ЛФЧХ данного звена и необходимого колебательного звена представлены на рисунке 35, а, а их переходные функции – на рисунке 35, б.

Рисунок 34
– Электрическая принципиальная схема колебательного -контура

а) б)

а) ЛАЧХ и ЛФЧХ;б) переходная функция

Рисунок 35
– Характеристики колебательного звена и -контура

При анализе графиков частотных характеристик и переходных процессов (рисунок 35) колебательных звеньев можно сделать следующие выводы:

· увеличение (уменьшение) постоянной времени звена при неизменном декременте затухания приводит к сдвигу частотных характеристик влево (вправо).

· при неизменном коэффициенте демпфирования увеличение постоянной времени звена приводит к сужению полосы пропускания; колебательность переходного процесса не меняется.

· при неизменной постоянной времени увеличение (уменьшение) коэффициента демпфирования приводит к уменьшению (увеличению) колебательности переходного процесса и к более плавной ЛФЧХ.

· при неизменной постоянной времени увеличение (уменьшение) коэффициента демпфирования приводит к уменьшению (увеличению) перерегулирования, сужению (расширению) полосы пропускания и уменьшению (увеличению) колебательности.

3.
Исследование дифференцирующих звеньев

a.
Исследование частотных характеристик идеального дифференцирующего звена

Для исследования частотных характеристикидеального дифференцирующего звена в прикладном пакете Proteus\ISIS составляем структурную схему, представленную на рисунке 36. Логарифмические частотные характеристики идеального дифференцирующего звена представлены на рисунке 37, график переходной функции – на рисунке 38.

Рисунок 36
– Структурная схема для исследования идеального дифференцирующего звена

Рисунок 37
– Логарифмические частотные характеристики идеального дифференцирующего звена

Рисунок 38
– Переходная функция идеального дифференцирующего звена

b.
Реализация идеального дифференцирующего звена

Реализуем идеальное дифференцирующее звено схемой, изображенной на рисунке 39. ЛАЧХ и ЛФЧХ дифференцирующего звена представлены на рисунках 40 и 41, переходная функция – на рисунке 42.

Рисунок 39
– Электрическая принципиальная схема дифференцирующего звена

Рисунок 40
– ЛАЧХ и ЛФЧХ дифференцирующего звена

Рисунок 41
– ЛАЧХ и ЛФЧХ дифференцирующего звена с инвертором

а)

б)

Рисунок 42
– Переходная функция схемы реализации идеального дифференцирующего звена

c.
Исследование частотных характеристик реального дифференцирующего звена

Для исследования частотных характеристикреальногодифференцирующего звена в прикладном пакете Proteus\ISIS составляем структурную схему, представленную на рисунке 43. Логарифмические частотные характеристики реальногодифференцирующего звена представлены на рисунке 44, переходные функции – на рисунке 45.

Рисунок 43
– Структурная схема для исследования реальногодифференцирующего звена

Рисунок 44
– Логарифмические частотные характеристики реальногодифференцирующего звена

Рисунок 45
– Переходные функции реальногодифференцирующего звена

d.
Реализация реального дифференцирующего звена

Реализуем реальноедифференцирующее звено с помощью схем, изображенных на рисунке 46. ЛАЧХ и ЛФЧХ дифференцирующего звена представлены на рисунках 47, переходные функции – на рисунке 48.

а)б)

а) -цепочка;б) -цепочка

Рисунок 46
– Электрические принципиальные схемы реального дифференцирующего звена

Рисунок 47
– ЛАЧХ и ЛФЧХ схем реализации дифференцирующего звена

Рисунок 48
– Переходная функция схемы реальногодифференцирующего звена

4.
Исследование интегрирующих звеньев

a.
Исследование частотных характеристик идеального интегрирующего звена

Для исследования частотных характеристикидеального интегрирующего звена в прикладном пакете Proteus\ISIS составляем структурную схему, представленную на рисунке 49. Логарифмические частотные характеристики идеального интегрирующего звена представлены на рисунке 50, график переходной функции – на рисунке 51.

Рисунок 49
– Структурная схема для исследования идеального интегрирующего звена

Рисунок 50
– Логарифмические частотные характеристики идеального интегрирующего звена

Рисунок 51
– Переходная функция идеального интегрирующего звена

b.
Реализация идеального интегрирующего звена

Реализуем идеальное интегрирующее звено схемой, изображенной на рисунке 52. ЛАЧХ и ЛФЧХ интегрирующего звена представлены на рисунках 53 и 54, переходная функция – на рисунке 55.

Рисунок 52
– Электрическая принципиальная схема интегрирующего звена

Рисунок 53
– ЛАЧХ и ЛФЧХ интегрирующего звена

Рисунок 54
– ЛАЧХ и ЛФЧХ интегрирующего звена с инвертором

Рисунок 55
– Переходная функция схемы реализации идеального интегрирующего звена

c.
Исследование частотных характеристик реального интегрирующего
звена

Для исследования частотных характеристикреальногоинтегрирующего звена в прикладном пакете Proteus\ISIS составляем структурную схему, представленную на рисунке 56. Логарифмические частотные характеристики реальногоинтегрирующего звена представлены на рисунке 57, переходные функции – на рисунке 58.

Рисунок 56
– Структурная схема для исследования реальногоинтегрирующего звена

Рисунок 57
– Логарифмические частотные характеристики реальногоинтегрирующего звена

Рисунок 58
– Переходные функции реальногоинтегрирующего звена

При анализе частотных и переходных характеристик реальногоинтегрирующего звена и его реализации можно сделать следующие выводы:

5.
Исследование изодромного звена

Изодромное звено можно условно представить в виде совокупности двух звеньев, действующих параллельно, — идеального интегрирующего и безынерционного. Поэтому данное звено совмещает полезные качества обоих звеньев и часто используется в качестве регулирующего устройства ПИ-регулятора (пропорционально-интегрального регулятора).

a.
Исследование частотных характеристик изодромного звена

Для исследования частотных характеристикизодромногозвена в прикладном пакете Proteus\ISIS составляем структурную схему, представленную на рисунке 59. Логарифмические частотные характеристики изодромногозвена представлены на рисунке 60.

Рисунок 59
– Структурная схема для исследования изодромногозвена

Рисунок 60
– Логарифмические частотные характеристики изодромногозвена

b.
Реализация изодромного звена

Реализуем изодромноезвено схемой, изображенной на рисунке 61. ЛАЧХ и ЛФЧХ интегрирующего звена представлены на рисунках 62 и 63, переходная функция – на рисунке 64.

Рисунок 61
– Электрическая принципиальная схема изодромногозвена

Рисунок 62
– ЛАЧХ и ЛФЧХ изодромногозвена

Рисунок 63
– ЛАЧХ и ЛФЧХ изодромногозвена с инвертором

а) б)

а) без инвертора;

б) с инвертором

Рисунок 64
– Переходная функция изодромногозвена

6.
Исследование звена запаздывания

Для исследования частотных характеристикзвена запаздывания в прикладном пакете Proteus\ISIS составляем структурную схему, представленную на рисунке 65. Логарифмические частотные характеристики изодромногозвена представлены на рисунке 66, переходные характеристики – на рисунке 67.

Рисунок 65
– Структурная схема для исследования звена запаздывания

Рисунок 66
– Логарифмические частотные характеристики звена запаздывания

Рисунок 67
– Переходные функции звена запаздывания

Поделиться:
Нет комментариев

Добавить комментарий

Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

№ п/п Параметры динамических звеньев
Безынерцион. Апериодич. 1-го порядка Апериодич. 2-го порядка Колебательное Реальные дифференцирующие и интегрирующие, звено запаздывания
K T, с T1, с T2, с T, с ξ T, с
14 25-37 0.06 – 0.5 0.26 0.06 – 0.5 0.06 – 0.5 0.1-0.9 0.06 – 0.5